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Motivation I 

 Course focuses on matrix population 
models 

 These models are populated by so-
called “vital rates”: 

 Survival probabilities 

 Reproductive rates 

 Require good estimates of vital rates 
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Motivation II 

 Useful to directly estimate λ using 

 Capture-recapture data 

 Abundance survey estimates 

 Integrated population models 

 

 Useful to directly estimate contributions 
of demographic components to λ 
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 Parameter 
 Unknown, (fixed) quantity associated with population 

 Statistic 
 Summary of sample measurements 

 If sample taken randomly, then also random variable 

 Estimator 
 Statistic associated with a parameter 

 Denoted by  ^ (“hat”)  

 Estimate 
 Specific number from an estimator 

 Vary from sample to sample 

 

 

Some definitions 

How do estimators behave? 

 Probability density (mass) function 
 Frequency distribution of an estimator over multiple 

samples 
 Plot of f(x) vs x 

 E.g. coin flips:  x: {0,1}, f(x): 0.5, 0.5 

 Represents frequency from population 

 Frequencies sum (or integrate) to 1 

 Non-negative 

 Discrete (coin toss) 

 Continuous (means) 

 Describes behavior of random variables 
 Assigns probabilities to outcomes 

Concepts: Bias and Precision 
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Unbiased and Precise Biased but Precise 

Unbiased but Imprecise Biased and Imprecise 

Bias, Precision 
Unbiased and precise

A

C

B

D
Biased but precise

Unbiased but not precise

Biased and not precise

Attributes of Estimators 

 Expected value  E(Y) = ΣY*f(y) 
 Weighted average of R.V. over all possible values 

 Mean value of die roll: 

 

 Bias: E(Ŷ) –Y 
 Difference between expected value of estimate and 

parameter (MLE) 

 Variance: var(Ŷ) = E([Ŷ - E(Ŷ)]2) 

 Mean Squared Error  
• E([Ŷ – Y]2)= Var(Ŷ) + [Bias(Ŷ)]2 

E(x)  =  1*(1/6) + 2*(1/6) + ... + 6*(1/6) 

        = 3.5. 
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Accuracy 
(balance of bias and precision) 

2)ˆ( BiasVarianceSMSE 

Mean Square Error 
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Concepts and Notations 

Pr(X|θ) – probability of observing data X 
       given population parameters θ 
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Concepts and Notations 

 Methods of Inference 

 Maximum Likelihood 

 Bayesian 
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Example: a coin tossing 
experiment 

Suppose a coin is tossed 5 times with the 
result: 

    X = HHTHT 

 

Assuming each toss is independent, 

     

 
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Concepts and Notations 

 
Probability statements could be used to 

estimate parameters using either  
maximum likelihood  

or  
Bayesian  

methods of inference. 
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Likelihood 

 For discrete data, a ‘likelihood’ is simply 
the probability of observing the data. 

 In a probability statement, the data are 
conditional upon the parameters. 

 This is reversed in the likelihood, e.g.,  

   L(q | X) = Pr(X | q) 

 Find what parameter values maximize 
the likelihood function (i.e., MLE). 
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Likelihood 

 The degree of curvature in the 
likelihood function about the MLE 
reflects the estimator variance. 

 

 Technically, variances are obtained 
from the matrix of second partial 
derivatives of the likelihood function. 
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Example: a coin tossing 
experiment 
Likelihood:   L(p|HHTHT) = p3(1-p)2 

 find the value of p that maximizes the 

likelihood of observing this sequence of 3 
heads from 5 coin tosses (i.e., the MLE). 
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Bayesian 

Application of Bayes Theorem 

 

 

 

Pr( ) Pr( )
Pr( )

Pr( )


θ X θ
θ X

X

prior 
distribution of θ 

posterior 
distribution of θ 

generally unknown, but 
not required with Markov 

chain Monte Carlo 
approaches. 
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Bayesian 

 
Resulting inferences may be sensitive to 

choice of prior distribution,  
particularly when the data contain little 
information about the parameter(s). 
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Example: a coin tossing 
experiment 
Bayesian: 

 Use the data to update prior 
‘knowledge’ of the distn. to obtain the 

posterior distn. of p 

0 0.2 0.4 0.6 0.8 1

p

prior 
Posterior 
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Example: a coin tossing 
experiment 
Bayesian: 

 Use the data to update prior ‘knowledge’ 
of the distn. to obtain the posterior distn. 

of p 

0 0.2 0.4 0.6 0.8 1

p
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Example: a coin tossing 
experiment 
Bayesian: 

 Use the data to update prior ‘knowledge’ 
of the distn. to obtain the posterior distn. 

of p 

0 0.2 0.4 0.6 0.8 1

p
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Example: a coin tossing 
experiment 
Bayesian: 

 Data with high information content can 
overwhelm stronger priors, e.g., 30 heads 
from 50 coin tosses 

0 0.2 0.4 0.6 0.8 1

p
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Max. Likelihood vs. Bayesian 

ML Bayesian 

Pros Widely used. 

Computationally 
straightforward. 

More natural interpretation. 

Easier to implement complex 
models. 

Can incorporate prior 
knowledge. 

Cons Numerical issues 
(has ‘true’ maximum 
been found?). 

‘Unnatural’ 
interpretation. 

How should prior knowledge 
be expressed. 

Computationally intensive. 

Difficult to spot 
unestimatible parameters. 
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Incorporating Covariates  

 Often we may wish to allow parameters 
to be functions of covariates or other 
factors of interest (e.g., habitat type, 
rainfall in the last 24 hours, distance 
from a road). 

 

 Generally requires a link function to 
transform linear relationships on to the 
0-1 interval. 
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The Logit Link 

 

 

 

which can be rearranged as, 
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The Logit Link 
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Hypotheses, Theories and 
Models 

 A hypothesis is simply a story about how 
the world (or a part of it) works. 

 

 A theory is a hypothesis that has become 
widely accepted after surviving repeated 
attempts to falsify it. 
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Hypotheses, Theories and 
Models 

 A model is an abstraction of a system, and 
may include hypotheses and theories 
about the system. 

 

 Models are used to describe and predict 
system behavior.  

 

 A model may be conceptual, verbal or 
mathematical. 
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Hypotheses, Theories and 
Models 

 Mathematical models are often developed to 
project the consequences of hypotheses. 

 

 Competing hypotheses can be represented as 
different models. 

 

 Model-based prediction of system behavior 
under competing hypotheses represents a key 
step in the conduct of science and management.  
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Comparing models 

 Hypothesis testing 

 seek ‘sufficient’ evidence to falsify a null hypothesis 

 e.g., likelihood ratio tests 

 Information theoretic approaches 

 rank models in order of relative distance from ‘truth’ 

 model weights can be calculated 

 e.g., AIC, DIC, etc 

 Bayesian approaches 

 Bayes factors 

 directly estimate model probabilities given the data 
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Likelihood Ratio Tests 

1. Fit 2 models to the data, with and 
without the effect of interest (θ). 

2. Calculate test statistic as 

 

3. Compare to chi-square distribution 
with degrees of freedom equal to the 
number of parameters required to 
estimate θ. 

   2 'LR l lq q   
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Information Theoretic 
Methods 

 Relative measure of distance from 
‘truth’ based on Kullback-Liebler 
Information. 

 

 

 K = number of parameters 

 Models with small values are preferred 

 Parsimony is useful by-product 

 2 2AIC l K  q
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Information Theoretic 
Methods 

 Small sample adjustment could be 
used. 

 

 

 

 Debate over ‘effective’ sample size in 
occupancy models. 
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Information Theoretic 
Methods 

 Can adjust AIC for overdispersion/poor 
model fit. 
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 AIC = AIC –min(AIC) is what is 
important. 

 

   

Information Theoretic 
Methods 
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Information Theoretic 
Methods 

 “Likelihood” of model j, given the data. 

 

 

 

 

 

   model data exp 2jL j IC 
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Information Theoretic 
Methods 

 Model weights can be calculated that are ad-
hoc measures of support for each model in 
the candidate set 
 
 
 
 

 Can be used to obtain model averaged 
estimates, or summed across models to 
evaluate the importance of specific factors. 
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Information Theoretic 
Methods 

 Evidence ratios 

 

 

 

 

 A measure for the degree of support for 
model j compared to model k. 
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Model Averaging 

 May want to make inferences from 
multiple models. 
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Model Averaging 

 Care must be taken when model averaging  
parameters that respective parameters in 
different models have the same 
interpretation. 

 Estimated  parameters can be sensitive to 
other covariates included in model (e.g., 
interactions or correlations). 

 Suggest model averaging should be 
performed on the focal parameters (i.e., the 
survival or detection probabilities). 

“Absolute” fit of model 

 “A third principle recommends thorough 
checks on the fit of a model to the data 
… Such diagnostic procedures are not 
yet formalized, and perhaps never will 
be.  Some imagination or introspection 
is required…to determine the aspects of 
the model that are most important and 
most suspect.” (McCullagh & Nelder 
1989, Chapman and Hall, p. 8) 

Pearson’s c2 GOF Test 

 Logic: If model is ‘correct’, expected 
and observed cell frequencies for each 
multinomial cell should be similar. 

 If sample size is adequate, (expect 
at least 2 per cell), 

 S(observedi – expectedi)
2/expectedi 

                     ~ c2df = # cells – 1 

Bootstrap GOF Test 

 Compute ML estimates for parameters, 

 Produce empirical distribution of estimates: 
 Simulate capture histories for each released 

animal: 
 assume parameter = MLE, 

 ‘flip coins’ to determine survival and capture for each 
period, 

 Repeat for {Ri } animals, estimate parameters, 

 Compute deviance 

 Compare original deviance with empirical 
distribution (i.e., what percentile?) 

 


